Phare Phirio  : apprendre à apprendre

Pharepuzzle Phirio

PhareDataCenter Phirio

PhareSerious Games

PrecedentSuivant
  • Formations
    • Catalogue
    • Cloud
    • Big Data
    • Applicatif
    • DataScience
    • Infrastructures
    • Accompagnement
    • Sur mesure
  • Cheat sheets & labs
    • Présentation des technologies
    • Le Laboratoire
    • Blockchain
    • Big Data
    • Liens utiles
  • Informations pratiques
    • Phirio Team
    • Prestations
    • Qualité
    • Centre de formation
    • Nos références
  • Contact
    • Plan d'accès
    • Contact post-formation
    • Recrutement
    • Demande d'informations
  1. Vous êtes ici : Accueil
  2. Formations
  3. Catalogue
  4. Applications
  5. Analyse
  6. DS033

Formation : Spark ML

Durée de la formation

2 jours

Code cours

DS033

Prix de la formation

1 670 € HT

Sessions programmées

6 au 7 octobre11 au 12 décembre

Public :

Chefs de projet,architectes

Objectifs :

Savoir mettre en oeuvre les outils de Machine Learning sur Spark, savoir créer des modèles et les exploiter.

Prérequis :

Connaissance d'un langage de programmation comme Python, Java ou Scala.

  • Pour tester vos connaissances actuelles sur le sujet : Validation des pré-requis
  • Pour nous préciser vos attentes : Validation des attentes

Programme détaillé de la formation

Introduction

Rappels sur Spark : principe de fonctionnement, langages supportés.

DataFrames

Objectifs : traitement de données structurées. L'API Dataset et DataFrames
Optimisation des requêtes. Mise en oeuvre des Dataframes et DataSet.
Chargement de données, pré-traitement : standardisation, transformations non linéaires, discrétisation
Génération de données.

Traitements statistiques de base

Introduction aux calculs statistiques. Paramétrisation des fonctions.
Applications aux fermes de calculs distribués. Problématiques induites. Approximations. Précision des estimations.
Exemples sur Spark : calculs distribués de base : moyennes, variances, écart-type, asymétrie et aplatissement (skewness/kurtosis)

Machine Learning

Apprentissage automatique : définition, les attentes par rapport au Machine Learning
Les valeurs d'observation, et les variables cibles. Ingénierie des variables.
Les méthodes : apprentissage supervisé et non supervisé. Classification, régression.
Fonctionnalités : Machine Learning avec Spark, algorithmes standards, gestion de la persistence, statistiques.

Mise en oeuvre sur Spark

Mise en oeuvre avec les DataFrames.
Algorithmes : régression linéaire, k-moyennes, k-voisins, classification naïve bayésienne, arbres de décision, forêts aléatoires, etc ...
Création de jeux d'essai, entraînement et construction de modèles.
Prévisions à partir de données réelles.
Atelier : régression logistiques, forêts aléatoires, k-moyennes.


Recommandations, recommendForAllUsers(), recommendForAllItems();

Modèles

Chargement et enregistrement de modèles.
Mesure de l'efficacité des algorithmes. Courbes ROC. MulticlassClassificationEvaluator().
Mesures de performance. Descente de gradient.
Modification des hyper-paramètres.
Application pratique avec les courbes d'évaluations.

Spark/GraphX

Gestion de graphes orientés sur Spark
Fourniture d'algorithmes, d'opérateurs simples pour des calculs statistiques sur les graphes
Atelier : exemples d'opérations sur les graphes.


IA

Introduction aux réseaux de neurones.
Les types de couches : convolution, pooling et pertes.
L'approche du Deep Learning avec Spark. Deeplearning4j sur Spark.


Déroulé pédagogique
Modalités et délais d'accès
Méthodes mobilisées et modalités d'évaluation

Phirio

+33 1 55 33 52 10
info@phirio.fr
Calendrier
Code cours : DS033

Contenu de la formation
Spark ML:
  • Introduction
  • DataFrames
  • Traitements statistiques de base
  • Machine Learning
  • Mise en oeuvre sur Spark
  • Modèles
  • Spark/GraphX
  • IA

Accès à la liste des cours



Vous pouvez bien entendu composer votre programme personnel à partir de nos descriptifs de cours


Version du document : R726
Date de mise à jour du document : 2024/08/26


quelques une de nos réalisations
  • Recrutement
  • Data Dock Data Dock
  • Qualiopi
    Qualiopi
    La certification qualité a été délivrée par Proneo Certification au titre de la catégorie d'action suivante : ACTIONS DE FORMATION.

INFORMATIONS LEGALES

  • Protection des données personnelles
  • Mentions légales et crédits
  • Condition générales d'utilisation (CGU)

INFORMATIONS PRODUITS

  • Calendrier
  • Présentations de technologies
2025 Phirio Paris